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and therefore increases as the scale of the apparatus is 
increased. 

6"4"2. Effect of f ixed specimen size.--Consider first 
the dimensions arranged so that  the value a at which 
the specimen size is fixed is the optimum value for the 
particular focal distance (s) being used, the focal size 
(f) being also given its optimum value. Then, as in (18), 

s = 61a, f = 3a, d =  s /2 .  

:Now, if a smaller value of s were used, and if a and f 
were adjusted to their optimum values (for this new 
value of s), then, by (19), the resultant intensity at the 
film would decrease. Therefore, the optimum value of 
s for a given value of a must be in the region where 
s ~ 6/a. Consider now values of s in this range. 

If the intensity expression (4) (with I 0 now made 
oc l/f½) is differentiated with regard to f, the optimum 
value of f for a given value of ~ and s is seen to be 

f = 6 s ÷ l a -  V(12a2+481as) 
21 " (20) 

If the overlap condition is to be obeyed, then by 
substituting f ~ s/21 in (20) one readily obtains 

38/a 
s < - ~ - .  

Therefore, the optimuln value of focal size given by 
(20) cannot be reached in the region where s ~ 6/a. 
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Inspection of (4) shows that  the intensity at the film 
increases from zero when f = 0, and would in theory 
reach a maximum at the value of f given by (20); 
thus the best value of f is t h e  maximum permissible 
for overlap, i.e. 

f = s/2l .  

The intensity expression now reduces to 

I ~ (s-2/a)2 
s5/2 • (21) 

Differentiating this expression with regard to s, the 
maximum value of intensity is found to occur when 

s = 10/a, f = 5a, d = 5/a. (22) 

6.4.3. Focal size f i xed . - - In  this case, as the power 
loading will be constant, the optimum conditions must 
be the same as for the stationary-anode fixed-focus 
case. That is, 

a -- f /3,  s = 21f, d --- l f ,  

as in equation (13). 
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A Method for the Est imat ion  of T r a n s m i s s i o n  Factors* in 
Crystals of Uniform Cross Section 
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This article presents a method of estimating the transmission factors of crystals with uniform cross 
section. It synthesizes Albrecht's idea of dividing the section into parallelograms and measuring the 
path length x for the centre of each, with Howells's loci of points of constant x. Thus, bands of 
approximately constant x are obtained, which make the computations very quick. An example 
and a detailed discussion on the accuracy to be expected are also given. 

1. Introduct ion 

While working on the determination of the crystal 
structure of the strongly absorbing sodium-thyroxine 

* The authors think tha t  the name of transmission factor is 
more appropriate than  the generally accepted name of absorp- 
tion factor, as it actually gives the fraction of radiation trans- 
mi t ted  by  the crystal. 

AC6 

(# = 437 cm. -1) the intensities of the diffracted beams 
had to be corrected for absorption. 

The best method known to us .for estimating the 
transmission factors was that  of Howells (1950) by 
which these factors can be calculated very conveniently 
with any degree of accuracy required. Although it is 
very quick for some particular advantageous cases, it 
may become involved in some others, requiring a 
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calculation which includes all the parts of the graph 
explained in that  article. 

To obtain quicker, though less accurate, results, the 
method published by Albrecht (1939) was tried. He 
divided the section of the crystal into parallelograms 
with sides paraUel to the directions of the inciden~ and 
diffracted beams, measured the path length, x, trav- 
elled in the crystal by the rays diffracted from the 
center of each parallelogram, and calculated 

Thk0 = ( l / n ) ~  exp [--/~x], 

where The0 is the ratio I~ko/Ihko between the observed 
intensity and the ideal intensity had no absorption 
occurred. 

This method did not prove to be very helpful, as 
rather a great number of path lengths had to be 
measured, and many fractions of parallelograms had 
to be computed as well. 

2. The new method 

I t  occurred to one of us (R.V.) that  Albrecht's idea 
would lead to an extremely simple method if use was 
made of Howells's loci of points with constant x. 
Instead of dividing the section of the crystal in direc- 
tions parallel to the incident and diffracted beams, 
it is first divided (as in Howells's method) into regions 
so that  each region contains all the points which dif- 
fract beams entering and leaving the crystal through 
two given faces (these two faces may of course be the 
same one); then each one of these regions is in turn 
divided, by means of lines parallel to the locus of 
points with constant x (Fig. 1), into bands whose 
width is constant within each region. 

In his paper, Howells gives a rule for determining 
both analytically and geometrically the loci in the 
example given there. A general rule is the following: 
At any point P draw two straight lines PA and PB 
of equal length parallel to the incident and diffracted 
beams respectively, both being either in the direc- 
tion of the X-rays or in the opposite direction. Through 
A draw a line parallel to the entrance face, and through 
B a line parallel to the exit face. If these two lines meet 
at M, the locus in that  region is parallel to. PM. 

Of course, it is much more convenient to choose P 
at the intersection of the lines dividing the section of 
the crystal into regions if these lines intersect inside 
the drawing--or at least on one of them if they do 
not--and to choose A or B at one of the vertices. 
This will save lines and make the operation quicker 
and more accurate. I t  is obvious that  if the entrance 
face and the exit face are parallel, the locus will be 
parallel to them too. 

Having drawn the parallel lines in one region-- 
preferably the simplest one--the system of parallel 
lines in the neighbouring region is drawn through the 
points at which the lines of the first region intersect 
the border line between the two (Fig. 1). In this way, 
the bands may extend throughout more than one 
region. The path length x for all the points of one 
such polygonal is obviously constant, and therefore will 
be approximately the same for all points within such 
a complete band. 

The determination of the transmission factor re- 
quires now only a scale drawing of the crystal section, 
divided into the corresponding regions by the direc- 
tions of incidence and diffraction, the determination 
of the directions of the loci, the drawing of the systems 
of parallel lines, the estimation of the areas s of each 
complete band (see Fig. 1), the determination of the 
corresponding values of x-- taken at points equidistant 
from the two edges of the band--and the calculation 
of 

Thk0 = ~v s exp [--#x]/~: s ,  

where s is the area of the complete band for which the 
path length is approximately x. 

The values of s may be determined either directly 
or, for greater accuracy, as follows: If the region is a 
parallelogram with one pair of sides parallel to the 
bands, s is constant throughout it and is easily esti- 
mated. If the region, or part of it, is a triangle with 
one side coincident with an edge between bands, the 
increment As between one band and the next is 
2A/n 2, where A is the area of the triangle and n 
(preferably integral) is the number of bands in it. 
The values of s are then, starting from the vertex: 
½As, ~As, . . .½(2n-1)As.  If the region does not be- 

.// 

(a) 

\ 

Fig. 1. Two examples showing how the crystal section is divided into bands of approximately constant 
x, and how the bands may extend throughout more than one region. 
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(a) 

\ 

Fig. 2. The examples of Fig. 1, in which the  bands  have been divided into paral lelograms of equal area. 

D E F 
Fig. 3. Illustration of the example worked out in detail in § 3. 

long to any of the above-mentioned cases, it may be 
always divided into parallelograms and triangles which 
do belong to them. 

The accuracy in the estimation of the values of s 
may be checked since Zs must be equal to the area 
of the crystal section. 

As x varies linearly throughout one given region, 
the increment in/~x between adjacent bands is given 
by ,uAx = #(Xg-X1)/n ,  where X~ and X 1 are respec- 
tively the longest and the shortest path lengths in the 
region (X 1 is very often zero) and n is the number 
of bands in the region. As the path lengths x are 
computed for points in the middle of each band, the 
first value of /~x is obtained by adding to #X 1 the 
value of ½/uAx. Values for the remaining bands are 
obtained by successive additions of ,uAx. 

Another procedure is to divide each region again by 
another set of parallel equidistant lines, to form 
parallelograms (and fractions of parallelograms). The 
new direction is that  of the incoming rays, that  of 
the outcoming rays, or that  of the locus of a neigh- 
bouring region, and the parallelograms are built up in 
such a way as to obtain the least number of fractions. 
This may require a change in the direction of the 
second set of parallel lines even within one region. 
Now, instead of measuring the areas of each complete 
band, the number of parallelograms in it is counted. 
Of course, this requires all the parallelograms to have 
the same area, and this is easily achieved (Fig. 2). 

In home cases i t  is not necessary to draw all the 
parallelograms, but only the fractions close to the 

border line; the number of whole parallelograms is 
easily calculated from the scale drawing. 

The transmission factor becomes: 

Thk 0 = • p exp [ - - # x ] / ~  p ,  

where p is the number of parallelograms in the band 
for which the path length is approximately x (p is 
not necessarily integral). 

Similar considerations to those given above for the 
determination of s apply here for the determination 
of p; and the values of/~x are calculated in exactly 
the same way. 

For a given crystal, the accuracy in the result de- 
pends on the accuracy of the drawing and of the 
estimation of the fractions of parallelograms, and on 
the width of the bands. The extent tb which the width 
of the bands may influence the result may be seen in 
the following examples. In these examples the range 
of x that  has to be considered will also be discussed 
because very long path lengths contribute very little 
to the transmission factor. 

3. Example 

The cross-section ABCD of the crystal is rectangular, 
0.020 × 0.004 cm. (Fig. 3). The reflecting plane forms 
with A B  an angle 9O = 18 ° and its Bragg angle is 
0 -- 33 °. Thus, the incident beam forms with A B  an 
angle 9 O - 0 - - - 1 5  °, and the diffracted beam forms 
with A B  an angle 9o+0 = 51 °. (The values of 9O and 0 

30* 



468 A M E T H O D  F O R  T H E  E S T I M A T I O N  OF T R A N S M I S S I O N  F A C T O R S  

for any  plane m a y  be easily obtained from the recipro- 
cal lattice). Le t /~  be 400 cm. -1. 

The central  region, in which the  loci are parallel  to 
AB, is divided into 8 bands.  Then the bands in the  
other two regions are drawn,  parallel  to the  corre- 
sponding loci, and  they  are divided into parallelo- 
grams,  as explained in § 2. 

X~ = O, X~ = A E + F B  = 0-0208 cm., n = 8. Thus 
pAx =/u(X~-X1)/n = 1.04 and  ½#Ax = 0.52. 

D a t a  for all the  bands  are given in Table 1. 

The combined effect of Ft and Ax is shown in Table 2 
for the same diffraction plane. 

Table 3 gives the  percentages of error in Tn as 
compared with Tm in groups of constant  /~Ax (or 
cons tan t  lain). This table shows t h a t  the  error is 
approx imate ly  constant  for a given value of #Ax, 
and increases rapidly  with it. Al though these errors 
m a y  v a r y  for different diffraction planes and  for 
different crystal  sections, t hey  give an idea of the  value 
of #Ax  to be chosen in order to obtain a given accuracy.  

Table 1 

Band /tx exp [--ttx] p p exp [--#x] 

1 0.52 0.595 22.9 13-63 
2 1.56 0.210 28.6 6-01 
3 2-60 0.074 29.4 2.18 
4 3.64 0.026 25.1 0.65 
5 4.68 0.009 20.9 0.19 
6 5.72 0.003 16.7 0.05 
7 6.76 0.001 11-3 0-01 
8 7"80 0.0004 4.8 0.002 

159.7 22.72 

T = 22-72/160 = 0.142. 

4. D i s c u s s i o n  of the  a c c u r a c y  of the m e t h o d  

To show how the accuracy of the  result  depends on 
the  subdivision, the values of Tn (for n = 4, 8, 16) 
and  T~ (calculated with Howells 's  method)  are given 
below for the  same diffraction plane as in the  preceding 
example.  T~ is the  exact  value, and the  percentages 
of error are referred to it. 

T 4 = 0.130 12 % error 
T s = 0-142 3 %  error 
T16 = 0.145 1% error 
T~ = 0.147 0 ~o error 

Table 2 

/x 100 200 400 800 1600 

T 4 0.485 0.284 0.130 0.041 0.005 
T s 0.489 0.289 0-142 0.060 0.018 
Tie 0-491 0.290 0.145 0.066 0.027 
T~r 0-493 0.292 0-147 0.068 0.032 

I~Ax 

0.26 

0-52 

1"04 

2"08 

Table 3 

/~ n % 

100 8 0.8 
200 16 0-7 

100 4 1.6 
200 8 1.0 
400 16 1.4 

200 4 2.7 
400 8 3.4 
800 16 2-9 

400 4 11.6 
800 8 11.8 

5. T h e  effect  of n e g l e c t i n g  large  values  o f / i x  

The ex ten t  to which large values of ~tx m a y  be neg- 
lected is shown in Table 4, in which Tsi represents the  
value of T s calculated from Table 1 by  adding only 
the  i first  te rms (i = 1, 2, . . . ,  8). The next  column 
shows the  percentages of error, referred to Tss (which 
is obviously equal  to Ts). The last  column shows the  
highest  value of ~ux computed in each case. 

Table 4 

i 27p exp [ - g x ]  Tsi % /~c 

1 13-63 0.085 40 0-52 
2 19.64 0.123 13 1.56 
3 21-82 0-136 4.2 2-60 
4 22.47 0.140 1.4 3-64 
5 22.66 0.141~ 0.3 4.68 
6 22.71 0.1419 0-1 5.72 
7 22-72 0.1420 0.0 6-76 
8 22-72~ 0-1420 0.0 7-80 

Table 4 shows--unless  p increases too rap id ly  with 
/~x-- the highest value of /xx t h a t  need be computed  
in the  calculation of the  t ransmission factor.  I t  can be 
shown t h a t  for sufficiently nar row bands,  and  if p 
(or s) has the  same value for all the bands,  the  ranges  
of Fex to obtain errors of 10%, 1%, 0.1%, etc. are :  
2.3 (=  loge 10), 4.6, 6.9, etc. I f  the  bands are too wide 
(small n) and the  value of p increases rapid ly  with ,ux, 
the  corresponding ranges of /xx to be computed  are 
greater .  

I t  is most  impor tan t  to remember  tha t ,  even when 
some bands are neglected because of their  high /~x 
values, Zs  and Z p  mean  the  area  of the  complete 
crystal  section, including the  neglected areas. 

As a final remark ,  it  m a y  be noticed t h a t  if # is 
small, n m a y  be small  too (wide bands) ;  and t h a t  if 
/x is large, also n has to be t aken  large (narrow bands),  

bu t  in this case only a few bands  need be computed  
as the  large values of #x  are neglected. 

Our thanks  are due to H. Rovegno for his assistance 
in the calculations and for helping us to test  the me thod  
on m a n y  examples.  
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